Oracle 11i Tuning Advanced
Pricing for Optimal Performance

An Oracle Technical White Paper
March 2001

ORACLE

Tuning Advanced Pricing for Optimal Performance

EXECUTIVE OVERVIEW

Oracle Advanced Pricing is designed to deliver maximum flexibility when pricing
customer transactions. In and e-Business, transactions may be being entered by
consumers using Oracle iStore, by telephone sales personnel using Oracle Tele-
sales, from EDI orders being received electronically into Oracle Order
Management, or from a variety of other sources. The applications mentioned all
integrate with Advanced Pricing in Oracle Release 11i. All depend on the
Advanced Pricing Engine to instantly and correctly price these transactions,
regardless of the complexity of the pricing computations being performed.

Each time a customer transaction is entered, the Pricing Engine component of
Advanced Pricing is called to search through the applicable pricing rules - called
qualifiers - that apply to this transaction, and then to use these rules to select the
correct set of pricing actions including price lists, formulas, discounts, and
promotions that are needed to correctly price the transaction. Potentially, there
are thousand or even tens of thousands of available actions that may have been
setup in Advanced Pricing’s internal tables, so the task of the Pricing Engine--
providing maximum flexibility while delivering the extremely fast performance
demanded by e-Businesses--is very challenging.

Throughout the development of Advanced Pricing, meeting the demanding
performance requirements of e-Businesses has been a major design goal. To that
end, the software design of the product has been optimized, and the Pricing
Development team is continuously striving to find ways to further improve
product performance, particularly of the pricing engine.

The choices you make when selecting certain settings, or how you elect to set up
your pricing data can substantially improve the performance of the Advanced
Pricing Engine.

The objective of this paper is to share with you our understanding and insights
about these implementation and setup considerations, and to give you specific
recommendations that if followed will improve the performance you receive from
Advanced Pricing.

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 1

SOME TERMINOLOGY

Advanced Pricing utilizes pricing rules, called qualifiers to inform the pricing engine
component of the software when to apply pricing actions to a transaction. There
are several types of pricing actions, including price lists, formulas, and modifiers.
Modifiers include such pricing actions such as giving a discount, promotional
products, coupons, item substitutions, and several others.

The pricing engine cycles each time a calling application makes a pricing request to
the engine. Calling applications in 11i include iStore, Order Management, Oracle
Contracts, and Oracle Tele-sales.

PROCESS FLOW

Advanced Pricing Engine Cycle

e |Ca||ing Application|<7

| Pricing Request |

Qualified?
ffective Now?

1
1
1
1
| Pricing y
I Qualifiers | o . Selection
| .
: (Rules) : Engine
1
1
|
A —Y :
: Sel_ec_ted
| Pos_s_ible Eémgs
| Pricing
| Actions V
: Calculation
1
1
1
1
1
1

I
I
|
|
; Engine
I
I
I
|
I

| Pricing Result |

Figure 1 Pricing Engine Cycle How

Pricing Engine performance is the amount of cycle time that elapses between
when the pricing request is submitted to the engine by the calling application, and
when the pricing result is returned to the calling application by the engine.

The pricing engine goes through two types of processing activities each time it
executes. First, the engine runs a selection engine component that evaluates the
qualifier rules users have established, and based on those rules chooses the
qualified ‘pricing actions’ that the calling application may need to apply the
transaction they were processing when they called the pricing engine. Pricing
actions include price lists, such formulas as may be attached to price lists, and a
the wide variety of modifiers including discounts, promotional free goods, other

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 2

item discounts, accruals, and so forth.

The second activity is the calculation engine. The calculation engine processing
begins when the selection engine has completed the task of selecting the proper
pricing actions to apply to the transactions. The task of the calculation engine is
to perform all necessary calculations needed to compute net selling prices.

Our development team’s analysis of the Pricing engine’s performance
characteristics has revealed that the selection process is subject to more variability
of execution time, because the number of records that may be selected is subject
to much variability. Most of the material in this paper is aimed at improving
selection engine performance.

ADVANCED PRICING SETUP CONSIDERATIONS

The best opportunity for improving Pricing engine performance can be had by
analyzing the pricing data setups that the selection engine must process. In
general, by purging unneeded qualifiers, price lists, and modifiers, you will be
rewarded by improved Pricing Engine performance.

However, there are distributions of data in the pricing data setup that can slow the
Pricing engine execution. In the remainder of this paper we will describe these,
and make recommendations about how to avoid or eliminate them. The first of
these we will deal with is qualifier selectivity.

Qualifier Selectivity

In the process flow topic presented previously, we learned that the selection
component of the Pricing Engine looks at qualifiers to determine which pricing
actions to apply. As the Pricing engine finds qualifiers that apply to a transaction,
it preliminarily selects all price lists or modifier actions that the qualifier pertains
to.

When pricing qualifiers are defined in such a manner that the qualifier identifies a
narrow range of pricing actions, the majority of which should be applied to the
transaction, then that qualifier has high selectivity. Conversely, when a single
qualifier is linked to many pricing actions, the majority of which cannot be
simultaneously applied to a transaction, then that qualifier is said to have low
selectivity.

New Search Optimizer is introduced with the latest performance patch. Search
optimizer introduces a mechanism by which pricing engine tags the most selective
qualifier within a group of qualifiers attached to the same modifier. For example
modifier “2% discount” has two qualifier namely Price list = Corporate and
Customer = XYZ. Price List = Corporate is a non-selective qualifier because it is
attached to many modifiers. However Customer = XYZ is a selective qualifier
where the its occurrence is very low. Pricing engine will first match the most
selective qualifier within the qualifier group and then only match the less selective

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 3

qualifiers for the selected modifier. Search optimizer uses the number of
occurrences as a criteria to tag the selectivity. Hence pricing engine would be
intelligent to distinguish the selectivity of the qualifier “price list = common price
list” and “price list = customer specific price list”.

If a modifier has qualifier as well as the product attached to it then the Pricing
Engine is “Qualifier Driven” rather than “Product Driven”. For example a
modifier “2% discount” has a qualifier attached “Price list = Corporate” and
also has a product attached as “Item=ABC”. Pricing Engine will match the
Qualifier first and then match the product. Hence it is extremely important that
at least one qualifier is selective within the qualifier group.

Impact of Low Qualifier Selectivity

Low selectivity will have an adverse impact on Pricing engine performance.
Whether the impact will be enough to be deleterious depends on the exact
distribution of the pricing data. The larger the volume of data where qualifier
selectivity is low, the greater the deleterious impact on performance.

Example of High Qualifier Selectivity

To illustrate this, lets look at a business examples involving promotional pricing,
and consider how different pricing setups with high and low qualifier selectivity
might be structured. Then we will look at the Pricing Engine performance
implications of each.

Lets assume a hypothetical company whose customers belong to one of 3 groups:
wholesale, retail, and other. This company normally gives a 2% discount through
out the year, but each quarter it also uses promotional pricing. When the company
is having the promotion, it uses a special price list in lieu of the regular price list
and it also gives promotional discounts that vary depending on the customer class.
When the company is between promotions, it relies on a single price list, called
‘Corporate’ and offers one discount of 2%

Here is an example of pricing setup having high qualifier selectivity

Qualifier - Customer Class = ‘Wholesale’ Effective 2/15/2001 - 3/31/2001
Price List = First Quarter Wholesale Price List 2/15/2001 - 3/31/2001
Modifier = 5% Discount 2/15/2001 - 3/31/2001

in exclusivity group 1

Precedence = 100

Qualifier - Customer Class = ‘Retail’ Effective 2/15/2001 - 3/31/2001
Price List = First Qtr Retail Price List Effective 2/15/2001 - 3/31/2001
Modifier = 8% Discount

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 4

Precedence = 100
Qualifier - Customer Class = ‘Other’ Effective 2/15/2001 - 3/31/2001
Price List = First Qtr Other Price List Effective 2/15/2001 - 3/31/2001

Modifier = 3% Discount Effective 2/15/2001 - 3/31/2001

in exclusivity group 1

Precedence = 100
Price List = Corporate Price List 1/01/2001 - 12/31/2001

Modifier = 2% Discount Effective 1/01/2001 - 12/31/2001

in exclusivity group 1
Precedence = 200

In the above example, the pricing engine, when run, would find that a customer
belongs to one of the three classes and then would use the price list and modifier
for that specific class - Retail, Wholesale, or Other. It will also pull in the
Corporate Price List and the 2 % discount modifier.

Since the price lists are by definition exclusive, and the modifiers have been
assigned to exclusivity group 1, the engine will use precedence to select the price
list and modifier that are qualified by customer class, because customer class is
more specific than customer ‘all’.

Performance of the engine using the above setup will be good, because the
qualifiers cause the engine to retrieve price list and modifier records very
selectively. In the cases where Price List is passed by the calling application (for
example Order Management) qualifier will not be used to find the price list but it
will be used only to validate the price list. Hence in such a situation qualifier
selectivity may not impact the list price selection but will only impact Modifiers
selection.

Example of Low Selectivity Due to Historical Records

Now lets take a case to illustrating lowered setup selectivity, where the cause is a
large number of modifier and price list records with effectivity dates in the past.

Lets assume this company has been in business many years, and so has many
price lists and discount records in their system, with many being outside their
effectivity dates but still in the system for ‘historical purposes’. Using our
hypothetical company example, the setup data might look like this.

Qualifier - Customer Class = ‘Wholesale’ Effective 2/15/1991 -
Price List = First Quarter Wholesale Price List 2/15/2001 - 3/31/2001
= First Quarter Wholesale Price List 2/15/2000 - 3/31/2000

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 5

= First Quarter Wholesale Price List 2/15/1999 - 3/31/1999
and so forth back to 1991.
Modifier = 5% Discount 2/15/2001 - 3/31/2001

= 4% Discount 2/15/2001 - 3/31/2000
= 6.% Discount 2/15/2001 - 3/31/1999
and so forth back to 1991

in exclusivity group 1

Precedence = 100

Lets assume the other classes, Retail and Other, have data that looks largely the
same. Now lets look at customer ‘all’, where management has experimented with
many different discount structures over time.

Qualifier Customer All Effective 1/01/2001 - 12/31/2001
Price List = Corporate Price List 1/01/2001 - 12/31/2001
Modifier = 2% Discount Effective 1/01/2001 - 12/31/2001
= 1.8% Discount Effective 1/01/2000 - 06/30/2000
= 1.5% Discount Effective 7/01/2000- 12/31/2001
= 2% Discount Effective 1/01/2001 - 12/31/2001
and so forth back to 1991
in exclusivity group 1.
Precedence = 200

In the previous example, the qualifier selectivity is very low, negatively impacting
pricing engine performance. When the pricing engine executes against this data, it
will find that all the historical records (those with effectivity dates that are already
past) will be preliminarily qualified and selected by the Pricing Engine for further
processing, even though only one price list and modifier will be finally selected to
apply to the transaction. Specifically, for the historical records, the pricing engine
will be forced to compare the exterior pricing date passed to it from the calling
application to the effectivity date range of each record to determine if whether
the selection process should proceed to the next step of considering the
precedence. Since the effectivity date evaluation is a record-by-record process,
large number of historical records will have an adverse impact on Pricing engine
performance.

Correcting Low Qualifier Selectivity due to ‘Historical’ Records

Clearly, an opportunity exists to improve Pricing Engine performance by properly
handling ‘historical’ records. While the most direct route to improving engine

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 6

performance is to eliminate historical records from the system, many companies
have a business process to need to retain historical records for a period of time.

Advanced Pricing provides a flag on both price list and modifier records that
informs the engine whether the record is ‘inactive’ or ‘active’. Since the Pricing
Engine checks status of the record as part of the qualifier scan process, records
set to ‘inactive’ are automatically excluded from being selected for further
consideration.

Low Qualifier Selectivity Due to Release 10.7/11 Pricing

The predecessor releases of Oracle Applications provided far less flexibility about
how you set up your pricing data. Advanced Pricing is much more flexible,
providing you the capability to define your pricing rules and actions in a more
concise manner than could be done in either Release 10.7 or Release 11.

In Release 10.7 and in Release 11.0, discounts had to be associated to a price list.
Price List was a mandatory qualifier for a discount in R10.7/11. Because
R10.7/R11 system functionality required users to create different discounts
because in that release, one discount could only be linked to one price list. In
turn, price lists could be linked to either the customer or the Order Entry order
type, or they could be manually overridden on the order.

Therefore, in release 10.7 and 11.0, many Oracle customers find themselves with
large numbers of discount records, even when the number of different discrete
discounts in use is low.

In the upgrade for 11i, the relationship of qualifying the discount with the
customer has of necessity been handled by for 11i by having these relationships
be output into the 11i tables as. This can caused large number of qualifiers of
type “price list”, which will impact Pricing engine performance negatively.

Correcting Low Qualifier Selectivity due to Release 10.7/11 Upgrade

Here, as in the previous example, reducing of the number of discount records and
making the qualifiers specific will help you optimize 11i Pricing Engine
Performance. Consider merging these discount records into as few 11i modifier
records as possible, and then using 11i Pricing capability to tie them to customer
groups.

Very likely, if you examine your qualifiers and your business pricing requirement,
you will find you can qualify pricing either price lists or modifiers at higher level
of product hierarchy. For example if you are selling greeting cards and you only
have 15 distinct prices but 100,000 items. By grouping the items together in to
item categories, and using item category as the qualifier, you will have create only
15 price list lines rather than 100,000 lines. This will result in the Pricing engine
searching through price list lines, which will boost Pricing engine performance

Also, if there is no business need for a Price list to act as a qualifier to a discount,

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 7

you should delete any such records that have been created as part of your
upgrade processing.

Using Qualifiers as Constraints may result into Low Selectivity :
Example: If you have 1000 modifier lists. Out of which 200 lists have Price List
= “Corporate” as the only qualifier . This results into Low selectivity of the
qualifier because Pricing engine will be processing every list which satisfies this
qualifier.

Correcting Low selectivity when Qualifiers is used as Constraints:

If your business requirement is to have a non selective qualifier as the only
qualifier then consider combining these lists so that there will be less number of
lists for engine to scan.

Redundant Qualifiers - Another Enemy of Performance

Performance of the Pricing engine can be boosted by avoid qualifiers that are
redundant. Here is an example of a redundant qualifier:

Customer = *XYZ’ AND Customer Site =‘ABC’

For purposes of the Pricing engine selecting the proper price list or modifiers,
customer site is sufficiently specific to act as a qualifier, as it is more specific than
customer. Adding customer qualifier causes the Pricing Engine to evaluate the
customer condition unnecessarily. Eliminating such redundant qualifiers will act
to speed the Pricing engine on its way.

Blind Modifiers

Modifiers without any qualifier or any product attached. These modifiers are
processed by engine for every request line. Engine performance will be negatively
affected as the more number of blind modifiers get defined in the system.

Use of “ALL_ITEMS” as a product

Modifiers defined for “ALL_ITEMS” are processed by the engine for every
request line. Engine performance will be negatively affected as more number of
modifiers having “ALL_ITEMS” get defined in the system.

USE OF EXCLUSIONS AND THE ‘NOT=" OPERATOR

Please note that pricing engine will take additional processing time to evaluate
“NOT=" operator in qualifiers as well as to evaluate “EXCLUDE” in the product
hierarchy. If you have a very high volume of setup data then it is recommended
that you use caution when implementing these operators.

ANALYZING YOUR DATA DISTRIBUTIONS: A SCRIPT
Pricing provides a script to analyze the data distribution. This script needs to be

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 8

run at the SQLPLUS prompt using APPS login and the results need to be
provided to the pricing team in case of any performance bug logged by the
customer.

TECHNICAL IMPROVMENTS TO PRICING ENGINE PERFORMANCE

When you implement Advanced Pricing, there are several technical measures that
can be taken to ensure the best response time from the Pricing Engine. These
measures are related to implementation time activities.

Attribute Mapping

New in Release 11i, Advanced Pricing provides the capability to perform
attribute mapping. A patch is now available (please refer to Appendix 2) that
allows you to use ‘Static Generation’ for attributes mapping. If in your
implementation you are extending Advanced Pricing by mapping new attributes,
then you will want to apply this patch, as it will give you for faster Pricing
performance. Additionally, it also fixes a known PL/SQL memory issue.

Also, be careful while writing your own attribute sourcing. Please note that the
code you will get write will be executed for every pricing engine call and, if not
tightly written, negatively impact Pricing Engine performance.

Performance Opportunities with Phases and Events

11i Advanced Pricing provides a configurable capability that allows the pricing
engine execution to be broken up into phases, and allows each phase to be
associated with an event taking place in the calling application. This presents
some implementation time opportunities to improve Pricing engine performance.

If there is no need to fetch or view the discounts at the time of entering the order
lines, then you can modify the event phases records to do execute the discounting
phases just at the line save. This approach will cause the engine to perform the
price list line selections as each line is entered, while preventing the engine from
doing the selection or calculation of modifiers until the line save event causes the
modifier selection to cycle. For users not needed to view the discounts line by
line as the ordered is entered, this technique can enhance perceived pricing engine
performance.

Another recommended idea, is, in the case of unused Pricing Event phases, to set
End date for an unused phases to a date in the past. The effect of this is to
prevent Pricing Engine from attempting selection activity when the event that
triggers the Pricing Phase occurs.

Temporary Tablespace

Advanced Pricing makes extensive use of the temporary tablespace feature of
Oracle 8i. Therefore, proper sizing of temporary tables is very important to
obtaining optimal performance. Depending on the size of the transaction that will

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 9

be priced, the initial extent for temporary tables should be sized at between 64K
and 256K.

Additionally, the temporary tablespace should be defined as locally managed.

Memory Considerations:

Since Pricing engine is frequently called during order entry process it is important
that the pricing packages are always loaded into the memory. It is recommended
that you PIN e.g. keep the following Pricing packages in the memory

1. QP_PREQ_GRP

2. QP_BUILD_SOURCING_PVT

3. QP_resolve_incompatability PVT

4. QP_FORMULA_PRICE_CALC_PVT
5. QP_Calculate_Price_PUB

6. QP_CUSTOM

IMPORTANT! MAKE SURE THAT YOUR SHARED_POOL SIZE IS
APPROPRIATELY CALCULATED BASED ON THE USE OF THE
SYSTEM.

PERFORMANCE IN THE PRICING SETUP SCREEN

Following performance related improvements in the setup screen have been
made:

Price List setup screen: Query List price by product - A new find window has
been provided

Agreements Setup screen - A new find window has been provided

Modifiers Screen - A List of Values Customer Name, site_use, ship_to has
been provided

A word of caution: The user is responsible for the performance of the List of
Values/ validation of the user extended qualifiers/pricing attributes. Hence please
make sure that the where clause in the user defined Value set is properly tuned.

PERFORMANCE IN UPGRADE FROM 10.7/11 TO 11.1
Performance in upgrading the 10.7/11 pricing has been improved by

providing parallel threads

providing bifurcation so that the pricelists/modifiers of active orders can be
upgraded first and other data upgrade can deferred to a later convenient
time.

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 10

A Suggestion! Purging the unneeded pricing data prior to the upgrade will
improve the performance of the pricing upgrade as well as improving the
performance of the pricing engine. While purging the data please ensure that the
data integrity of the transaction system is maintained. An approach some
customers have successfully used for accomplishing this is to purge the price list
lines of the obsolete price list and upgrade just the price list header to maintain the
data integrity.

PERFORMANCE IN APPLYING CERTAIN PRICING DE-NORMALIZATION
PATCHES

If you have a very high volume of price list and modifiers data then you may
experience that the certain pricing patches take anywhere from 5 minutes up to an
hour to apply. The reason for this delay is that the patch also includes de-
normalization script for the existing data. Please do not kill the application of this
patch. These de-normalized columns are important for the pricing engine to
select the list price or modifiers. Large de-normalization patches have been
provided with parallel threading to improve the performance.

CONCLUSION

This technical white paper has given an overview of the major causes of poor
Pricing Engine performance, and has outlined corrective measures. For
additional information on Advanced Pricing, see the Oracle Advanced Pricing
User’s Guide.

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 11

APPENDIX 1: PERFORMANCE PATCHES (SUBJECT TO CHANGE)

Following patches have been provided to improve the Performance of the Pricing
Engine. You should always check with support for any changes in this list of patches.

Patch # Pack B | Pack C | Pack D | 11i.3 | Comments
Pricing

1426285 X Oct 2000
1520579 X X X Nov 2000
1508982 X X X Dec 2000
1555985 X X X Dec 2000
1620189 X X X X Dec 2000
1531826 X X Nov 2000
1545351 X X X X Mar 2001

The above table lists the pricing patch numbers. Check mark (X) indicates that
the patch needs to be applied if you are at that patch set level.

Important:! Certain performance patches have been released in the area of Pricing
and OM Integration. These patches are under the product “Order Management”.
Please check with your support representative to obtain these patches.

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 12

APPENDIX 2: DATA DISTRIBUTION ANALYSIS SCRIPT

Important! This script is subject to change. Always check with Oracle Support to ensure
you have latest version of this script.

column qualifier_context format a10
column qualifier_attribute format a22
column qualifier_attr_value format al5
column qualifier_attr_value_to format al0
column active_flag format a5 head 'ACTIV'
set pages 66

set lines 80

set feed on

ttitle 'Pricing Data Distribution'

spool gp_perf_distr.lis

prompt 'QP_List_Headers'

select list_type_code,active_flag, count(*) from qp_list_headers_b
group by

active_flag, list_type_code;

prompt '‘QP_List_Lines'

prompt 'QP_List_lines - distribution by type, qual, phase’
select list_line_type_code, qualification_ind , pricing_phase_id ,
count(*) from
qp_list_lines group by list_line_type_code, qualification_ind,
pricing_phase_id ;
prompt 'QP_List_lines - distribution by modifier_level code'’
select modifier_level code,
count(*) from
qp_list_lines group by modifier_level code;
prompt 'QP_List_lines - end dated modifiers '
select count(*)

from gp_list_lines a, qp_list_headers_b b
where a.list_header_id = b.list_header_id and
b.list_type _code not in('PRL''AGR') and b.active_flag ="Y"
and a.end_date_active is not null ;
prompt 'QP_PRICING_ATTRIBUTES'

prompt '‘QP_Pricing_Attributes- grouping by phase '

select pricing_phase_id, count(*) from qp_pricing_attributes group by
pricing_phase_id ;

prompt 'QP_QUALIFIERS'

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 13

SELECT count(*) from qp_qualifiers;
prompt 'QP_Qualifiers- distinct qualifiers '

SELECT qualifier_context, qualifier_attribute, count(*) from
qp_qualifiers

group by qualifier_context, qualifier_attribute;

prompt 'QP_Qualifiers- Highest non-selective '

select QUALIFIER_CONTEXT,QUALIFIER_ATTRIBUTE,
QUALIFIER_ATTR_VALUE,
QUALIFIER_ATTR_VALUE_TO, count(*) from qp_qualifiers where
active_flag = "Y' group by
QUALIFIER_CONTEXT,QUALIFIER_ATTRIBUTE,
QUALIFIER_ATTR_VALUE,
QUALIFIER_ATTR_VALUE_TO having count(*) > 50;
prompt 'QP_Qualifiers- header vs line '

prompt B e e e e e gl
select count(*) from gp_qualifiers where list_line_id is not null;
prompt '‘QP_Qualifiers- grouping by operator '

select count(*), COMPARISON_OPERATOR_CODE from
gp_qualifiers group by
COMPARISON_OPERATOR_CODE;

prompt '‘QP_rltd_modifiers'

prompt '‘QP_rlst_modifiers- group Count'

SELECT RLTD_MODIFIER_GRP_TYPE, count(*) from
gp_rltd_modifiers

group by RLTD_MODIFIER_GRP_TYPE;

prompt 'END of script’

prompt Ihkkkkkkkkikkkikk!

exit

/

Tuning Advanced Pricing Engine for Optimal Performances 3/20/01 2:44 PM Page 14

ORACLE

Tuning Advanced Pricing to Ensure Optimal Performance
March 2001

Author: Tony Maxey

Contributing Authors: Nitin Hase, Jayrama Holla

Oracle Corporation

World Headquarters

500 Oracle Parkway

Redwood Shores, CA 94065

USA.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
Web: www.oracle.com

This document is provided for informational purposes
only and the information herein is subject to change
without notice. Please report any errors herein to
Oracle Corporation. Oracle Corporation does not
provide any warranties covering and specifically
disclaims any liability in connection with this document.

Oracle is aregistered trademark, and Oracle Order Management is (are) a
trademark(s) or registered trademark(s) of Oracle corporation.
All other names may be trademarks of their respective owners.

Copyright © Oracle Corporation 2001
All Rights Reserved

